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Abstract: The potential of mean force (PMF) between two methane molecules in water is calculated using molecular 
dynamics with Ewald boundary conditions for two water models, the WK model (a nonpolarizable model) and the 
PSRWK model (a polarizable model), for the purpose of understanding what role many-body polarization plays in 
the hydrophobic interaction. These models of neat water have the same static dielectric constants and similar structural 
and thermodynamic properties. The methane—water interaction is taken to be exactly the same in both fluids. 
Nevertheless, the simulated potential of mean force between two dissolved methane molecules is very different for 
these two models. In the polarizable model, solvent-separated pairing is dominant over contact-pairing, while in the 
nonpolarizable model the reverse is true. 

1. Introduction 

Water reorganizes around small apolar solute molecules to 
form polyhedral cages or clathrates. Because the molar entropy 
of solvation of methane and inert gas atoms is negative it is 
thought that an apolar solute molecule orders water molecules 
causing the hydrogen bonds in its proximity to be suffer than 
these in the bulk. When two apolar solutes are dissolved, the 
number of water molecules needed to solvate the pair in one 
cavity is smaller than the number of waters needed to form two 
single-solute cavities. Thus, the entropy of the system should 
be greater when the two solutes are in contact, that is, when 
they share a solvation cage, than when they are in separate, 
possibly connected, clathrate cages (the so called "solvent-
separated pair"). It has thus been argued that there is an 
"entropic driving force" for hydrophobic aggregation. These 
considerations give rise to the traditional view that the hydro­
phobic effect is entropically driven; that is, the large entropy 
of association leads to a solvent-induced attraction between the 
solutes, at least at room temperature. 

It should be stressed that entropically-driven aggregation 
should occur in the absence of any attractive interaction between 
the solute molecules. Attractive interactions between the solutes 
and the waters complicate the picture, however. Because more 
waters are involved in creating two separate hydration shells 
than in the contact pair state, the solvent-separated state will 
have more attractive water—solute interactions than the contact 
pair state and the solvation energy of the system will thus be 
lower in the solvent-separated state. In real systems, the 
hydrophobic effect arises from the competition between these 
two tendencies—enthalpically-driven disaggregation and en­
tropically-driven aggregation. 

Pratt and Chandler1 constructed a semiempirical theory of 
the hydrophobic interaction between two hard-spheres based 
on the experimentally determined pair correlation function, goo-
(r), of neat water. This theory predicted a potential of mean 
force between the two solutes that had two minima: one 
minimum corresponded to the contact pair and the other to the 
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8 Abstract published in Advance ACS Abstracts, June 15, 1995. 
(1) Pratt, L. R.; Chandler, David J. Chem. Phys. 1977, 67(8), 3683-

3704. 

solvent-separated pair. The solvent-separated pair was found 
to be relatively more probable than the contact pair. If one 
labels the contact pair as X-X and the solvent-separated pair 
by X-H2O-X, then the Pratt-Chandler PMF predicts2 that the 
equilibrium constant for the reaction 

X - X + H2O *"= X-H 2 O-X (1.1) 

is Keq = 4.0. 
Pangali et al.3 were the first to apply the techniques of 

computer simulation to the problem of hydrophobicity and to 
test Pratt and Chandler's theory. They computed the average 
force exerted by water, interacting through an ST2 potential,4 

on a pair of apolar spherical solute molecules parallel to the 
intermolecular axis for a set of fixed intersolute distances. 
Although they could not integrate their average force to yield 
an accurate estimate of the PMF, their data provided the first 
evidence in support of the existence of a strong solvent-separated 
minimum in the PMF. 

Pangali et al. subsequently used umbrella sampling techniques 
to compute the potential of mean force.2,5 Again two minima 
in the potential of mean force were found with solvent-separated 
pairing dominant over contact pairing. This was in qualitative 
agreement with the results of Pratt and Chandler's theory, 
although the equilibrium constant turned out to be Keq = 3, a 
value somewhat smaller than that of Pratt and Chandler. Pangali 
et al. also examined the structure of the solvent-separated state 
and found that it usually consisted of the two solutes in 
individual clathrate cages with an intervening water shared 
between the two solvation shells. 

Although not able to compute the PMF, Geiger et al.6 

simulated two neon-like particles in water, also using the ST2 
model of water. Two solutes initially placed in contact were 
observed to vibrate for a very short time before separating and 
allowing one water molecule to penetrate the region between 

(2) Pangali, C ; Rao, M.; Berne, B. J. J. Chem. Phys. 1979, 7/(7), 2975-
2981. 

(3) Pangali, C ; Rao, M.; Berne, B. J. ACS Symposium Series 86, 1978. 
(4) Stillinger, F. H.; Scott, H. L. J. Chem. Phys. 1974, 60, 1545. 
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(6) Geiger, A.; Rahman, A.; Stillinger, F. H. J. Chem. Phys. 1979, 70(1), 
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them. This solvent-separated state persisted for the remainder 
of the simulation. 

The existence and stability of the solvent-separated state has 
been confirmed by subsequent simulations using different pair-
additive potentials.7-9 Recently, Smith and Haymet10 were able 
to determine the entropic and enthalpic parts of the PMF, W(r) 
= AH(r) — TAS(r), and found that there was a strong entropic 
intersolute attraction at short separations and that the enthalpic 
contribution was everywhere positive and strongly repulsive in 
the region of the contact pair. 

In all of the above cases, a stable minimum in the PMF 
corresponding to the solvent-separated pair has been found, and 
in all cases the solvent-separated pair was found to be more 
probable than the contact pair. 

All of the above simulations are based on nonpolarizable pair 
water-water potentials like the SPC, TTP4P, and ST2 potentials 
in which the Lennard-Jones (LJ) parameters used to model the 
0 - 0 short range interaction are fit to the measured enthalpy 
of vaporization of neat water without subtracting from this 
interaction either the polarization energy or the quantum 
librational energy. Recently water—water potentials have been 
reparametrized taking (some or all of) these contributions into 
account giving rise to the SPC/E and the WK potentials. In 
this paper we first examine whether the above observations 
regarding the hydrophobic interaction are robust against this 
reparametrization. We find that in the WK potential, contact 
pairing becomes dominant over solvent-separated pairing. It 
would be of interest to see if this reversal also holds true for 
the SPC/E potential. 

The studies mentioned so far are based on nonpolarizable 
water models. The water molecule is small, polar, and 
polarizable. Upon condensation from the gas phase where the 
dipole moment is 1.87 D, an additional dipole moment of 
between 0.8 and 1.0 D is induced on average in every water 
molecule. One would therefore expect the charge distribution 
on a water to be sensitive to its surroundings thus giving rise 
to different energetics and orderings than in nonpolarizable 
models and perhaps leading to quite different hydrophobic 
interactions. Others11 have disputed this contention. 

Van Belle and Wodak,12 in a recent simulation, have directly 
addressed the effects of solvent polarizability on the hydrophobic 
effect. They computed the PMF between two methanes for a 
nonpolarizable water model, SPC,13 and a polarizable water 
model, PSPC.14 They also investigated the solvent structure 
around the two solutes and around a single methane solute. Van 
Belle and Wodak found that in PSPC water the solvent separated 
minimum in the PMF is almost completely supressed. 

To better understand the effect of solvent polarizability on 
the PMF for two apolar solutes in water, we report here a study 
in which we paid close attention to important details such as 
intermolecular potentials and the treatment of long-range forces. 
We compare the nonpolarizable water model of WK15 with 
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802. 
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Sprik's polarizable PSRWK model.16 Both models give excel­
lent predictions for the thermodynamic and structural properties 
of bulk water and both also yield the correct static dielectric 
constant. Furthermore, both models possess the correct gas 
phase static quadrupole moment and adequately reproduce the 
structure of the water dimer. The Sprik model has a fixed dipole 
moment of 1.87 D augmented by a static dipole polarizability 
of 1.444 A3 and yields an average dipole in the bulk of 2.65 D. 
The WK model has a fixed dipole moment of 2.60 D, but its 
non-Coulombic parameters have been fit to a value of the 
internal energy which includes an approximation to the energy 
needed to polarize the water from its gas phase dipole moment. 

In our studies we use the same potential parameters for the 
solute—water interactions for all models of water considered. 
These are the same as the parameters used by Smith and 
Haymet.10 Finally, we have employed Ewald boundary condi­
tions to account for the long-range nature of the Coulomb 
interaction. We also compare simulations based on spherically 
truncated potentials. These precautions should ensure that any 
differences in the computed potentials of mean force are due 
solely to the water potentials employed and are not artifacts of 
the simulation method. 

It is shown in this study that our polarizable model (PSRWK) 
gives rise to much stronger solvent-separated pairing than our 
nonpolarizable model (WK). In our nonpolarizable model (WK) 
contact pairing is dominant over solvent-separated pairing, 
whereas in the polarizable model the reverse is observed. We 
suggest possible reasons for this behavior and compare and 
contrast it with previous work.12 

2. Potential Models 

2.1. The Sprik Polarizable Model of Water. The polariz­
able Sprik model (PSRWK) assigns four interaction sites to the 
water molecule. Positive partial charges, qa, are placed at the 
positions of the hydrogens, and a compensating negative charge 
is placed on a site along the H—O—H bisector at a distance 
TOM from the oxygen atom toward the hydrogen—the so-called 
"M" site. A fourth site is placed on each oxygen atom as the 
site for a Lennard-Jones interaction. The total interaction 
potential arising from the short range LJ potential and the 
interaction between the fixed or static charges is thus 

Af N 

^static -2ml 2ml 

1OO -OO 

-i=\ j=l 

,NN 

r',0 rj.O\ lri,0 rj,0 
+ 6 

~2mt 2mi 2ml 2ml I, 

A=I j= I a.=HuH2,M P=HUH2.M llri,a — 1J,/ 

(2.2) 

The molecular polarizability of water is modeled by four 
closely spaced charges arranged in a tetrahedron centered on 
the oxygen, instead of by a point polarizability. Two of the 
charges point toward the hydrogen sites, while the other two 
point in the "lone pair" directions. The positions of these 
charges are fixed, but their magnitudes are free to fluctuate, 
subject to the constraint of zero total charge. The polarization 
energy of these fluctuating charges is taken to be17 

N 
a 

;=1 a=l /S=I^OQ 

(2.3) 

where do is the isotropic dipole polarizability of a water 
molecule, the distance between the fluctuating charges is 

(16) Sprik, Michiel J. Chem. Phys. 1991, 95(9), 6762-6769. 
(17) Sprik, Michiel J. Phys. Chem. 1991, 95, 2283-2291. 
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Table 1. Comparison of the Parameters of the Sprik Model 
(PSRWK) and the Watanabe and Klein Model (WK) 

parameter 

roM (A) 
4H (e) 
Aoo(106kjA,2mol-') 
Coo(103kjA6mor') 
a (A) 
O0(A

3) 
1(A) 

WK 

0.15 
0.62 
5.000 
4.850 

PSRWK 

0.26 
0.60 
3.766 
3.556 
0.20 
1.444 
0.775 

V2a, and Cp0. are coupling constants. In order to provide for 
the short-range damping of polarization interactions, the fluc­
tuating charges are "smeared" into Gaussian distributions of root 
mean square width §. This complicates the computation of 
interaction energies and forces. The Coulomb interaction 
between Gaussian charge distributions of widths §,• and j-j is 
given by 

„ W _,/ Hr1-IjH \ 
U= ,.,,erf : (2.4) 

The total interaction potential consists of the sum of C/Static, the 
Coulomb interactions between the Gaussian fluctuating charges 
and between the fluctuating charges and the fixed charges, and 
£/poi. The specific parameters of the polarizable (PSRWK) can 
be found in ref 16 and Table 1. 

One method of obtaining the polarizable charges is to treat 
the extra charge degrees of freedom as dynamical variables by 
introducing a fictitious kinetic energy into the Lagrangian 

N 4 

f̂ictitious = X Xm'<??o/2 (2.5) 
/=1 a=l 

where m' is a fictitious mass. Thus, standard molecular 
dynamics techniques, such as the velocity Verlet algorithm,18 

are used to propagate the induced charges forward in time in 
concert with the time evolution of the molecular positions and 
velocities. 

The dynamics of the fluctuating charges is complicated by 
the intramolecular coupling, given by the C 0̂., and by the 
constraint of zero total charge. Both of these complications 
may be eliminated by a normal model transformation. The new 
variables, denoted by q&, qx, qy, and qz, are related to the old 
variables, q\, q2, qi, and q$ by19 

?A = 2^i + ?2 + <73 + id 

Ix = 2^l ~ #2 + ?3 "~ «4) 

Qy = 2(-<7i - ft + 13 + ?4> (2-6) 

Iz = 2<-$l + 12 + 93 - 94) 

The charge distribution produced by the fluctuating charges 
gives rise to small multipolar polarizabilities in addition to the 
dipole polarizability. In terms of the transformed (normal mode) 
charges, the polarization potential becomes simply 

(18) Allen, M. P.; Tildesley, D. J. Oxford University Press: Oxford, 
1987. 

(19) Martyna, G. The transformation given in eq 2.7 corrects the typo 
ineql3ofref25. The authors must thank Dr. Glenn Martyna for providing 
the charge normal mode transformation. 

u
Poi = 't^-(ll + ll + ̂  (2-7) 

Z=IZa0 

The equations of motion for the transformed charges are then 

a2 

mQ<iiK = ~ -IiK + VtK ( 2 - 8 ) 
" 0 

a2" 
^Q&A = 2JIiK (2-9) 

cv=i 

where K = x, y, z and the {V«) are the result of applying the 
transformation of eq 2.7 to the intermolecular forces defined 
by 

Fia = - ~ a = 1 , 2 , 3,4 (2.10) 
Wia 

The constraint of zero total charge can now be trivially satisfied 
by starting the system in a state where each water molecule is 
neutral and then not integrating the equations of motion for the 

The partial charges and LJ parameters were chosen by Sprik 
to reproduce the structural and thermodynamic properties of bulk 
water and the polarization part of the potential was found to 
reproduce water's static dielectric constant.16 The PSRWK 
model reproduces the evaporation energy of bulk water fairly 
well, although the pressure is too high. The radial distribution 
functions goo, goH, and #HH for the PSRWK model compare 
well with experiment.20 The dielectric constant of PSRWK was 
calculated by Sprik to be 86 ± 10, which is in reasonable 
agreement with the experimental value of 78.21 

2.2. The WK Potential for Water. The Watanabe-Klein 
model,15 denoted WK, was chosen as a good nonpolarizable 
model. In the WK model the Coulombic interactions are 
modeled by three partial charges two positive charges at the 
locations of the hydrogens, and a negative charge placed at an 
"M site" 0.15 A from the oxygen. A Lennard-Jones interaction 
is centered on the oxygen. The charges and the distance 
between the "M site" and the oxygen were chosen to reproduce 
the estimated liquid phase dipole moment of water, and the LJ 
parameters were fit to the experimental density, energy, and 
pressure at room temperature. Unlike many water potentials, 
the WK potential fit to the energy includes an estimate of the 
polarization energy and the quantum mechanical librational 
energy.22 A brief comparison of the parameters of PSRWK 
and WK is provided in Table 1. The WK potential adequately 
reproduces the thermodynamic and structural properties of bulk 
water. However, the estimated diffusion constant of the WK 
model is half the experimental value. The dipole moment of 
the WK model is 2.60 D, and its dielectric constant is estimated 
to be 80 ± 8. Table 2 shows that there are only a few small 
differences between the bulk thermodynamic and structural 
properties and dimer geometry and energy predicted by the WK 
and PSRWK model. 

2.3. The Methane—Methane and Methane—Water In­
teractions. The methanes were approximated as spherically 
symmetric LJ molecules. The Me—Me LJ parameters were 
taken from Jorgensen.23 Although the water—water LJ param-

(20)Soper, A. K.; Phillips, M. G. Chem. Phys. 1986, /07(1), 47-60. 
(21) Bertolini, D.; Cassettari, M.; Salvetti, G. J. Chem. Phys. 1982, 76(6), 

3285-3290. 
(22) Kuharski, Robert A.; Rossky, Peter J. J. Chem. Phys. 1985, 82(11), 

5164-5177. 
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Table 2. Comparison of the Properties of Water Predicted by the 
Sprik Model (PSRWK) and the Watanabe and Klein Model (WK)* 

property WK PSRWK 

£/(kcal/mol) -11.0" -11.1 
/>(kbar) 0.1 0.6 
Odimer (kcal/mol) -5 .1 -5 .7 
fdim.r(A) 2.89 2.85 
€ 80 ± 8 86 ± 10 
D ( 1 0 - 9 m 2 s - ' ) 1.1 ± 0 . 3 2.4 ± 0 . 3 

" Energy quoted without quantum correction of ref 22. b This table 
is adapted from ref 16. 

eters for PSWRK and WK are different, the same Me-W LJ 
parameters were used in order to eliminate any differences in 
the solute—solvent interactions. These parameters were the 
same as those by Smith and Haymet.10 Any differences 
observed between the PMF for PSRWK and WK will thus be 
due solely to the water model under consideration. The LJ 
parameters used are displayed in Table 3. 

3. Simulation Methods 

3.1. Molecular Dynamics Algorithm. The PSRWK model 
was simulated by an extended Lagrangian technique in which 
the fluctuating charges are treated as an auxiliary set of 
dynamical degrees of freedom with fictitious velocities and 
kinetic energies. The equations of motion for both kinds of 
degrees of freedom are integrated simultaneously using standard 
techniques. The rigid bond constraints are applied using 
RATTLE,24 and the constraint of zero total charge is satisfied 
by using the alternate polarization coordinates described in 
section 2.1. 

In order to compute the Helmholtz free energy, constant 
temperature molecular dynamics was performed. It has been 
shown by Sprik25 that in order for PSRWK to produce the 
correct time scale for the dynamics, the charge motion must be 
adiabatically separated from the molecular motion of the waters. 
This is consistent with the notion that the fluctuating charges 
are, in some general way, modeling the true polarization 
fluctuations of the water's electron cloud which should rapidly 
readjust to changes in the positions of the molecules. In order 
to keep the charges cold, three separate Nose" thermostats are 
needed—one for the molecular rotations set at 300 K, one for 
the molecular translations also set at 300 K and one for the 
charges set at 5 K. The thermostats are coupled to the system 
as a frictional process using a second-order formulation of 
Hoover's equations.26 The second-order equations were used 
in place of the mixed first- and second-order equations of Sprik 
because they can be integrated by a modification of the velocity 
Verlet with RATTLE algorithm. It must be noted that these 
equations of motion do not preserve the total energy of the 
extended system. There is, however, a good constant of the 
motion26 which is given by 

1 N 

2 i= i a=0,Hi,H2 

I -2 I -2 I -2 
_ iitrans^trans ' UrOtVrOl ' tipolVpo/ ' 5NKgI uanst]aans T 

3NkBTmVm + 3NkBTpolVpol (3.11) 

where the rj's are thermostat variables and the Q's are 

(23) Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. J. Am. Chem. Soc. 
1984, /06(22), 6638-6646. 

(24) Andersen, H. C. J. Computational Phys. 1983, 52, 24-34. 
(25) Sprik, Michiel; Klein, Michael/. Chem. Phys. 1988, 89(12), 7556-

7560. 

corresponding fictitious masses when all of the thermostats have 
the same temperature. 

The masses, Qx, of the thermostats are best expressed in terms 
of relaxation times, QK = HK8Tr^. Sprik16 reported the 
rotational relaxation time, rrot, to be 35 fs, the translational 
relaxation time, ttrans, to be 140 fs, and the charge fluctuation 
relaxation time, Tp0I, to be 8.5 fs. In order to achieve stable 
integration, however, we found here that the mass of the bath 
associated with the polarization as well as the mass of the 
polarization degrees of freedom, had to be reduced by a factor 
of 10 from the published values, yielding a relaxation time for 
the polarization of 2.7 fs. 

The constant temperature velocity Verlet with RATTLE 
algorithm is due to Martyna27 and is detailed in ref 28. It was 
used in all of the simulations. In every case, adequate 
temperature control was achieved. 

3.2. Treatment of Long-Range Coulomb Forces. Both 
the polarizable and nonpolarizable water models involve 
Coulomb interactions. To properly account for the long-range 
nature of these forces, Ewald summation 18,29,3° was used in all 
of the simulations. Because the fluctuating charges in the 
PSRWK model are represented by Gaussian charge distributions, 
a slight modification of the standard formula is needed. In our 
simulations the real-space cutoff, a, was taken to be 6.0/L for 
all the simulations. The reciprocal space vectors {G} were 
distributed in a hemisphere, and their maximum length was 
taken to be 8JT/L. These parameters correspond to the use of 
approximately 150 reciprocal space vectors. 

The PSRWK model is one of the most expensive models of 
water to simulate. Recently, a new polarizable model of water 
was introduced31 which treats all charges as dynamical variables. 
This new model requires much less cpu time than the PSRWK 
model. It runs only 10% slower than fixed charge models. Had 
this model been available at the time we initiated this study it 
would have been used in place of the PSRWK model. 

3.3. Computation of the Potential of Mean Force. Several 
methods can be used to determine the potential of mean force 
(PMF) between two methane molecules, W(r).31032 The full 
PMF is computed from the windowed solute-solute distribution 
functions by a method due to Bader.33 The set of overlapping 
solute—solute distribution functions, {g^r)}, computed using 
the set of restraining potentials, {^(r;^)}, are determined from 
simulations. For the problem of two LJ particles dissolved in 
water, we used a quadratic potential in some windows 

*„(»",/•„) ^ ( r - r , ) 2 (3.12) 

and a quartic function in others windows 

* , ( ^ ) = | y ' - ' / (3-13) 

The quartic restraining potential is flatter around r^ than the 
quadratic potential (eq 3.12) while rising more sharply at the 
edges. These properties allow the force constant, kp, to be made 
large enough to adequately restrain the solutes to a narrow 

(26) Martyna, Glenn J.; Klein, Michael L.; Tuckerman, Mark J. Chem. 
Phys. 1992, 97(4), 2635-2643. 

(27) Martyna, G. Private communication. 
(28) M. H. New Ph.D. Thesis, Columbia University, 1994. 
(29) Hansen, J.-P. North-Holland, Amsterdam, 1986; pp 89-129. 
(30) deLeeuw, S. W.; Perram, J. W.; Smith, E. R. Proceedings of the 

Royal Society, London A 1980, 573(1752), 25-56. 
(31) Rick, S. W.; Stuart, S. J.; Berne, B. J. J. Chem. Phys. 1994, 101, 

6141. 
(32) Beveridge, D. L.; DiCapua, F. M. Annual Reviews, Inc., 1989. 
(33) Joel Bader Ph.D. Thesis, University of California, Berkeley, 1992. 
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window without unduly affecting the structure near the center 
of the window. For relatively flat regions of the PMF, the 
quartic restraining potential was found to be better at confining 
the solutes to a narrow window of interparticle distances. 
Similarly, near the peak of a sharp barrier, the quartic potential 
was better able to keep the system localized on the barrier than 
the quadratic restraining potential. From eq 3.12, the set of 
potentials of mean force, {W^(r)}, are determined 

W1Jj) = ~kBT log glt{r) - *„(;-,/•„) + K„ (3.14) 

where [Kf1] is a set of (unknown) proportionality constants. To 
avoid the estimation of the K^, and to include data from the 
overlaps between the distributions, we compute the derivative 
of the windowed PMF by differentiating eq 3.14 

FM(r) = dW^r)ldr (3.15) 

An approximation to the derivative of the full PMF, over the 
entire separation range, may then be computed as a weighted 
sum over the F1Sr) 

(3.16) 

The Wftir) are a set of weighting functions. We have taken 

w„(r) = *„(r) (3.17) 

although other choices are possible. This choice of weighting 
functions emphasizes information from well-sampled regions 
of the windows. Finally, the full PMF is reconstructed by 
integration 

W(r) = f F(r')d/ + W0 (3.18) 

where Wo is a constant which sets the zero of free energy. 
A detailed exposition of an implementation of the algorithm 

used to compute the potentials of mean force, as well as the 
full error analysis, may be found in ref 28. 

For the polarizable water model, all computations were started 
from a neat configuration of 216 molecules in a 18.626 A box 
that had been equilibrated for 40 ps after starting from an ice­
like tetrahedral lattice. The two waters closest to the center of 
the simulation box were then "mutated" into methanes, and the 
water—methane system was then equilibrated for 14 ps more. 
A combination of quartic and quadratic restraining potentials 
were used. Each window was simulated for 30 ps. The 
windows using the quadratic restraining potential were centered 
at 3.0 and 4.0 A, while quartic restraining potential was used 
for the windows centered at 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5 A. 
This large number of windows ensured adequate overlap 
between the resulting intersolute distance distributions. The 
quadratic restraining potentials used a force constant of 2.4 kcal/ 
mol/A2, and the quartic restraining potentials used a force 
constant of 38.6 kcal/moiyA4. 

For the nonpolarizable model, fewer windows were used. For 
simplicity, only quartic restraining potentials were used because 
they produced distributions that were better overlapped, for the 
small number of windows used, than those that would have been 
produced using quadratic windows. They were centered at 4.0, 
5.0, 6.0, and 7.0 A. The force constant used for all the windows 
was 38.6 kcal/mol/A4. 

The WK simulations were started from a configuration of 
216 molecules that had been equilibrated for 80 ps from an 
ice-like lattice. Each window was simulated for 60 ps. Longer 
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Figure 1. The raw solute-solute distance distribution functions as 
computed for the WK model. 
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Figure 2. A comparison of the smoothed PMF for two methanes in 
water for PSRWK and WK with the computed (ICT) error bars included. 
The solid line is the PSRWK result. The dashed line is the WK result. 
The depths of the first minima have been set equal. 

simulations were required for the WK potential since its 
diffusion constant is roughly half of the PSRWK diffusion 
constant. 

4. Results 

The raw intersolute distance distributions for the nonpolar­
izable water model are shown in Figure 1. The potentials of 
mean force for the two water models are presented in Figure 2. 
These PMFs have been slightly smoothed by averaging points 
over their nearest and next nearest neighbors. AU error bars 
are reported as ±1CT. For both of these figures, the energies of 
the contact pair minimum for the two water models have been 
set equal. 

From Figure 2, it is clear that the solvent-separated minimum 
of the polarizable water model is quite deep and lies below the 
solvent-separated minimum of the nonpolarizable model (when 
both contact pair minima are set equal). The height of the 
barrier separating the contact pair from the solvent-separated 
pair, as measured from the bottom of the contact pair well, is 
1.0 ± 0.2 kcal/mol for PSRWK and 1.5 ± 0.2 kcal/mol for 
WK. The depth of the second minimum, as measured from 
the barrier, is 0.6 ± 0.2 kcal/mol for PSRWK and 0.4 ± 0.2 
kcal/mol for WK. The energy difference between the two 
minima is 0.5 ± 0.2 kcal/mol for PSRWK and 1.1 ± 0.2 kcal/ 
mol for WK. 

These data show that the nonpolarizable model does, indeed, 
have a higher barrier separating the solvent-separated state from 
the contact pair state. Additionally, the nonpolarizable model 
considered here has a larger difference in free energy between 
the solvent-separated and contact pair states than the polarizable 
model. Finally, the solvent-separated minimum in the polariz­
able model is slightly deeper than that of the nonpolarizable 
model. 
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Figure 3. The unnormalized probability of finding the solutes a 
distance r apart in the fluid. The solid line is the PSRWK result. The 
dashed line is the WK result. The first minima of the potentials of 
mean force have been set equal. 

The probability density that the two solutes will be a distance 
r apart in the fluid is given by 

!0(r) a= Anr e -W(r)lkBT (4.19) 

This probability density is displayed in Figure 3. For the 
polarizable model, the solvent-separated pair is more probable 
than the contact pair. Surprisingly, for the nonpolarizable 
model, the relative probabilities are reversed, and the contact 
pair is the more probable system configuration. This result is 
reflected in the values of the equilibrium constant for the 
pseudoreaction that takes a contact pair to a solvent-separated 
pair, eq 1.1, which may be computed from the intersolute 
distance probability, <2(r)2 

Keq = f™0(f)dr\fr\&(r)dr (4.20) 

Choosing rc = 5.5 A, the probability distributions shown in 
Figure 3 yield 

^q(PSRWK) = 2.3 ± 0.3 

tfeq(WK) = 0.7 ± 0.2 

(4.21) 

(4.22) 

Pangali et al.2 have pointed out that this computation is very 
sensitive to the location of rmax, which, ideally, should be 
between the second and third maximum of <Z(f). For the 
computation of the intersolute distance probability, rmin = 3.25 
A, rc = 5.5 A, and rmax = 8.15 A, ones using ST2 were for 
krypton-like particles. However, since the krypton—krypton 
potential used had a larger width parameter (pKrKr = 4.12 A) 
and a deeper well (̂ KrKr = 171 K) and the krypton—water 
potential had a smaller well depth (eKrw = 77.8 K) than the 
potentials used in our study, one can still conclude that both 
the PSRWK and WK models promote contact pairing to a 
greater degree than ST2. Furthermore, the WK model seems 
to induce the aggregation of two apolar solutes which is in 
marked contrast to other nonpolarizable, pair-additive water 
potentials for which the solvent-separated state is more prob­
able.2,9 This raises the important question: Do potential models, 
like the WK and SPC/E models, based on parameters corrected 
for the polarization energy, always promote contact pairing over 
solvent-separated pairing? 

Although we did not truncate the potential in the foregoing, 
it is of interest to determine what the effect of potential 
truncation could be on the PMF. Because the PSRWK 
simulations are very cpu intensive we only investigate this 
question using the WK potential. Results from our previous 
simulations of the WK potential using Ewald boundary condi-

W(r) 
(kcal/mole) -2.5 

Figure 4. Comparison of potentials of mean force for the WK potential 
computed using Ewald summation (solid line) and spherical truncation 
(dashed line) boundary conditions. 

tions are compared with simulations in which the Coulombic 
interactions are spherically truncated at 8.5 A in Figure 4. The 
potential of mean force for the truncated WK potential was 
computed using nine quartic windows centered at 4.0, 4.5, 5.0, 
5.0, 6.0, 6.5, 7.0, and 8.0 A using a force constant of 77.1 kcal/ 
mol/A4. The simulations were started from a configuration of 
216 molecules that had been equilibrated from an ice-like 
structure for 80 ps. Statistics were then collected for each 
window for 120 ps. These results indicate that the use of 
spherical truncation boundary conditions can substantially raise 
the barrier between the contact pair and the solvent-separated 
pair and change the position of the two minima. Spherical 
truncation significantly perturbs the PMF in the simulation based 
on the WK potential thus it is probable that spherical truncation 
will also give erroneous PMFs in the closely related polarizable 
model potential. Because polarizable models are more sensitive 
to boundary conditions, it is expected that the effects of spherical 
truncation boundary conditions on the potential of mean force 
for a polarizable model will be more serious. 

In light of these findings one must question the validity of 
calculations of the PMF using spherical truncation of the water-
water potential as was done in many published simulations. It 
may well be that the WK potential is uniquely sensitive to 
boundary conditions, but we doubt this. These observations 
raise serious questions about the use of spherical truncation for 
calculating PMFs—questions that should be addressed more 
frequently in simulations. 

Other truncation schemes have been introduced. For ex­
ample, the Coulomb potential has been replaced by a damped 
Coulomb potential.3435 Prevost et al.35 have compared simula­
tions on neat water using this scheme with simulations using 
Ewald boundary conditions. They found that the damped 
Coulomb simulations give results very similar to the full Ewald 
potential for neat water. This is the scheme used by Van Belle 
and Wodak12 in their calculation of the PMF for two methane 
molecules in water. Unfortunately these results were not 
compared with Ewald simulations to verify that subtle effects 
do not give rise to differences. 

5. Conclusions 

The simulations reported here are used to compare the PMF 
for two spherical methane molecules in a nonpolar water model 
(WK) and in a corresponding polarizable water model (PSRWK) 
for the same Me-W interaction. These two water models have 
essentially the same dielectric and structural properties. The 

(34) Brooks, C; Pettitt, B. M.; Karplus, M. J. Chem. Phys. 1985, 83, 
5897. 

(35) Prevost, M.; van Belle, D.; Lippens, G.; Wodak, S. MoI. Phys. 1990, 
71, 587. 
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simulations are performed using full Ewald boundary conditions 
in order to avoid artifacts due to various truncation schemes. 
The results of these simulations are summarized below. 

The PMF in the polarizable (PSRWK) model is found to be 
qualitatively different from the nonpolarizable (WK) model. The 
polarizable model favors solvent-separated pairing, whereas the 
nonpolarizable model favors contact pairing. Because the 
Me-W interaction is taken to be identical in the polarizable 
and nonpolarizable models, the differences observed in the PMF 
for these two models can be ascribed to the differences in the 
water—water interactions. If the parameter 6M«-W is made 
smaller in the polarizable model than in the nonpolarizable 
model, as was done in the study of van Belle and Wodak, the 
solvent-separated pairing would be reduced. 

The PMF in the nonpolarizable (WK) model of water is found 
to be qualitatively different from the PMF found in other 
nonpolarizable water models (such as SPC, ST2, TIP4P). The 
Me—Me contact pair is found to be more probable than the 
Me-H20-Me solvent-separated pair. The equilibrium constant 
for the transformation specified by eq 1.1 is found to be 
£eq(WK) = 0.7 ± 0.3 compared to the value of Keq = 3.0 found 
by Pangali et al. for a slightly different apolar sphere in ST2 
water which favors solvent-separated pairing. The potential 
parameter, ew-w. for the 0—0 interaction in the WK model 
was parameterized based on the inclusion of correction factors 
to the internal energy due to the quantum mechanical nature of 
the librations and the energy needed to polarize the water 
molecules.22 The bulk internal energy predicted by the WK 
model determined from the MD simulation is —11.0 kcal/mol. 
When the polarization energy (the energy to change the gas 
phase charges to liquid state charges) is added, one obtains the 
experimentally determined internal energy of bulk water is —9.9 
kcal/mol.36 The WK model is therefore roughly 10% more 
strongly bound than other nonpolarizable models3637 which 
ignore the polarization energy. Because the water molecules 
interact more strongly in the WK model, this model should be 
more solvophobic toward the pair of methane molecules than 
the other models, thus inducing more contact pairing. This is 
precisely what is observed. Since all of these other models give 
qualitatively different results for the PMF than the WK model, 
that is, all of them predict that the solvent separated pair Me— 
H2O—Me is more probable than the contact pair Me—Me, we 
expect that other nonpolarizable models, such as the SPC/E 
model, which are also parametrized based on the polarization 
energy correction, will also give more stable contact pairing 
than solvent separated pairing. 

The potential of mean force computed for the WK potential 
displays a higher barrier between the solvent-separated and 
contact pair minima and a shallower solvent-separated minimum 
than that computed using PSRWK. Precise quantitative com­
parisons are not possible at this time due to the large statistical 
uncertainties associated with the calculations. 

When the nonpolarizable model water—water potential (WK) 
is spherically truncated at an O—O separation of 8.5 A, the PMF 
is found to be very different from the results of full Ewald 
boundary condition simulations. Prevost et al. use a different 
"truncation scheme".35 Here we find that solution properties 
like the PMF are quite sensitive to the truncation scheme used. 
Thus one cannot necessarily trust predictions made using 
potentials truncated at such distances. At this truncation distance 
water molecules in contact with one solute molecule will not 
interact with the water molecules in contact with the other solute 

(36) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; 
Klein, M. L. J. Chem. Phys. July 1983, 79(2), 926-935. 

(37) Reimers, J. R.; Wans, R. O.; Klein, M. L. Chem. Phys. 1982, 64(1), 
95-114. 

Table 3. LJ Parameters for the Water—Water, Methane—Methane, 
and Water—Methane Potentials 

interaction a (A) e (K) 

water-water (PSRWK) 3.19 101.0 
water-water (WK) 3.18 141.5 
methane-methane 3.73 147.5 
water-methane (all) 3.44 107.3 

molecule when the two solutes are in contact, but these water 
molecules can interact with a water molecule between the two 
methane molecules in the solvent-separated pair M e - r ^ O -
Me. 

The reasons for the differences in the PMF for the polarizable 
(PSRWK) potential and the nonpolarizable (WK) potential are 
not yet clear. Nevertheless, we list several observations and 
conjectures that might help to clarify these findings. 

(a) In nonpolarizable water, electrostatic interactions cause 
the waters to hydrogen bond. If a hydrogen-bonded water 
molecule is forced to rotate around an axis perpendicular to 
the molecular plane its dipole moment must rotate with it. This 
rotation will then raise the electrostatic energy of the system. 
Such distortions of the hydrogen bond network are therefore 
resisted. 

In polarizable water, electrostatic interactions still cause the 
waters to hydrogen bond. If a hydrogen-bonded water molecule 
is forced to rotate around an axis perpendicular to the molecular 
plane only its permanent dipole moment must rotate with it. 
The induced moments are free to point in other directions, 
consequently, rotation of the permanent dipole will raise the 
electrostatic energy, but the induced dipole—dipole interaction 
need not increase. In polarizable water, rotation of a water 
molecule should not raise the electrostatic energy as much as 
in nonpolarizable water and such distortions of the hydrogen-
bond network are not likely to be resisted as much as in the 
nonpolarizable water models. 

Notwithstanding these two facts, the structure, energetics, 
static dielectric properties, and hydrogen bonding in neat liquid 
are observed to be similar for polarizable and nonpolarizable 
water molecules. How can this be true given that it costs less 
electrostatic energy to distort the hydrogen-bond network in the 
polarizable model than in the nonpolarizable model? This might 
be due to the different LJ parameters used for the 0—0 
interactions in these two models (see Table 3). 

(b) In the solvent-separated pair, Me—H2O—Me, the water 
molecule shared between the two Me molecules will hydrogen 
bond to water molecules forming the two clathrate cages 
containing each of the Me molecules. Although not shown here, 
it has been found that the distribution function for the total dipole 
moment of the bridging water molecule in polarizable water is 
broader than for the other water molecules in the shell.28 This 
bridging water molecule will be able to explore more configu-
rational states, and this will lead to a larger entropy in the 
solvent-separated state for the nonpolarizable model than for 
the polarizable model. Should this be the case, the polarizable 
model should give rise to a more stable solvent-separated state 
than the nonpolarizable model. 

(c) In the contact pair state, all of the waters in the solvation 
shell of the pair of Me molecules will be essentially equivalent, 
and the hydrogen bond profiles will be essentially the same for 
the polarizable and nonpolarizable models. Thus there will be 
no difference in the free energies of contact pairing in the 
polarizable and nonpolarizable fluids. This is verified by the 
fact that the total dipole moment on these shell molecules are 
the same for the polarizable and nonpolarizable models.28 

The qualitative results observed in our polarizable model are 
in complete disagreement with those recently published by van 
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Belle and Wodak12 for the PSPC model. In the PSPC model 
the solvent-separated minimum in the PMF of two methane 
molecules virtually dissappears. In trying to explain these 
differences it is important to note that (a) van Belle and Wodak 
use different Me-W potentials for the SPC and PSPC simula­
tions of water, whereas we use the same Me-W potentials for 
the WK and PSRWK simulations, (b) Van Belle and Wodak 
truncate the water—water potential, whereas we use Ewald 
boundary conditions. Although it is completely possible that 
these methodological differences can play an important role in 
generating differences between our simulations and theirs, it is 
also possible that the observed qualitative differences are due 
to the very different potential models of water used. Neverthe­
less, it is worth discussing further how the methodological 
differences might effect the results. 

Even if possible errors introduced by the truncation scheme 
used by Van Belle and Wodak are ignored, the difference in 
the Me-W interaction potential used by Van Belle and Wodak 
in the SPC and PSPC models may be sufficient to explain their 
observed disappearance of the solvent-separated minimum in 
the PMF of the polarizable fluid. The well depth of the Me-W 
potential used with the polarizable model (PSPC) was 0.019 
kcal/mol (8.9%) smaller than that used with the nonpolarizable 
model. As discussed by Pratt and Chandler38 and later by Smith 
and Haymet10 a weakening of the solute—water interaction will 
destabilize the solvent-separated pair relative to the contact pair. 

Pratt and Chandler have introduced a set of integral equations 
for the calculation of the PMF of two spheres in water. To 
calculate the PMF from these equations one must input the 0—0 
radial distribution function of water, go-o(r), and the direct 
correlation function, CMe-oM, for the solute-water interaction. 
Pratt and Chandler modeled the methanes as hard spheres and 
thus use a Percus—Yevick closure for the CMe-o(r). They then 
substitute the experimentally determined go-o(r) and solve the 
integral equation for the PMF. This semiempirical theory has 
been very useful in understanding the qualitative properties of 
the hydrophobic interaction. For continuous potentials one can 
introduce the mean spherical approximation, CMe-oW = 

—/WMe-w(r), into these equations. We have computed the 
go-o(r)'s for simulations of neat WK water and neat PSRWK 
water. These functions are essentially indistinguishable except 
for very small differences. The t/Me-wM are the same for both 
of the simulations reported in this paper. Thus if we invoke 
the MSA approximation and the Pratt-Chandler integral 
equations, we would predict that the PMFs for the WK and 
PSRWK should be essentially identical. The simulations show 
that the PMFs for these two models are very different. Why? 
Four possibilities suggest themselves: (a) The simulations are 
in error, (b) The integral equations are accurate, but the MSA 

(38) Pratt, L. A.; Chandler, D. J. Chem. Phys. 1980, 75(7), 3434-3441. 

closure is in error, (c) The MSA closure is correct, but the 
integral equation is incorrect for polarizable fluids, (d) Subtle 
differences in go-o(r) at long range might give rise to important 
differences in So-o(fc) and thus to different PMFs. Since the 
inversion of the OZ equations depends on the structure factor 
rather than on go-o(r), this may give rise to differences in the 
PMFs. 

It is our belief that the simulations are not in error. It is 
quite possible that even if U^e-wir) is the same for the two 
simulations, the MSA closure may be incorrect, and the 
CMe-w(r)'s may be different in the two simulations. In this 
case the OZ equations introduced by Pratt and Chandler can be 
regarded as defining the direct correlation functions. Then the 
MSA closure may be worse than other possible closures, and 
the direct correlation functions may depend on the other 
correlation functions, goH(r) and gim(r). It is difficult to 
determine the structure function at small k for simulated systems 
so that we cannot say if item (d) is responsible for the 
differences. Lastly, if one formulates the problem in terms of 
Gaussian density and polarization fields39 and includes the 
coupling between the divergence of the polarization field and 
the density field, it is possible that after integrating out the 
polarization field one will obtain a different integral equation 
for the PMF for the polarizable solvent than for the nonpolar­
izable solvent. 

One factor that has not been treated here is the effect of 
including the polarizability of the solutes. The polarizability 
of methane is 2.60 A3,40 which is larger than that of water (1.44 
A3). At contact, when the methanes are close enough together 
to experience very similar electric fields, their repulsion should 
be enhanced. As the solutes are separated, the correlation 
between their local electric fields should be reduced. The 
additional solute—solute repulsion originating from induced 
dipole-induced dipole interactions should then be reduced. 
Overall, the effect would be to stabilize the solvent—separated 
pair. This effect has already been observed in simulations of 
polarizable Xe atoms in nonpolarizable water.41 
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